
RAFX Technical Note 2! Updating GUIs from your PlugIn!
Copyright © 2016 Will Pirkle

!
Updating GUI Controls from your PlugIn RackAFX v6.8+!
Will Pirkle!!
This document explains the RackAFX v6.8(+) API for updating GUI controls from your PlugIn. Previously
this was done via a simple call to a plugin function called sendUpdateGUI(). The problem is that this
could potentially cause a race condition, depending on the timing of the GUI servicing. In v6.8, this par-
adigm was altered to provide a thread safe, and less confusing implementation.!!
Usage!
Many users have requested the ability to update the GUI from within their plugins. Usually there are three
reasons for this:!!
• having built-in presets within your plugin itself, separate from external presets from the other APIs!
• allowing one control to alter the state of other controls, usually involving switches!
• implementing the ability to share controls, for example a synth might have one set of envelope genera-

tor controls (Attack, Decay, Sustain, Release) and then a switch that allows those controls to connect to
various destinations (amplifier, filter cutoff, etc…); when the user changes the switch, the knobs update
to the proper positions!!

If you want to link continuous controls together (like knobs or sliders) so that they move at the
same time, you should not use this updating mechanism as it is a clumsy way to accomplish this -
instead, use the Advanced GUI API to create custom controls that your plugin owns and can ma-
nipulate, or simply link them in the GUI Designer by giving them the same control tag. If you really
don’t want to do any GUI programming but still need to link controls, see the example project LinkedCon-
trols for an example of linking two knobs controls together, however notice that you need to declare extra
variables to keep track of button states for thread safety. !!
The ability to make outbound parameter updates exists in the other APIs as well, though the implementa-
tions vary; for AU you must generate AUEvents to the listener (the GUI), in VST3 and AAX you supply
outbound parameter changes at the end of the audio process phase in a queue (VST3) or as parameter
change calls (AAX). That being said, there are some who think that this kind of operation might suggest
poor GUI design - for example, you could use a tabbed-panel of ADSR controls in the synthesizer exam-
ple above, that would not take up much more space than the set of controls plus a switch, and would not
require any of the following operations. So, use this functionality as you wish but be careful - when pre-
sets are loaded and saved, any control that creates a GUI update will issue that update when the
preset is loaded, so it is critical to make sure that your intended preset indeed requires such up-
dating. !!
GUI_PARAMETER Structure!
RackAFX v6.8 introduces a structure that is used for thread safe operations between GUI and processing
threads. This same structure is used to pass outbound parameter changes, either as meter values (built-
in) or as GUI control changes that you implement from within the plugin. The structure is very simple and
you only need to use two of its member variables, shown in bold below.!!
typedef struct!
{!
! int nControlIndex;! ! /* index of CUICtrl Object in plugin list */!
! UINT uControlId;! ! /* RackAFX ControlId */!
! float fNormalizedValue;! /* normalized version of parameter */!
! float fActualValue;!! /* actual value of parameter */!
! bool bDirty;! ! ! /* flag that parameter needs update */!
! bool bKorgVectorJoystickOrientation; /* flag */!

! !

RAFX Technical Note 2! Updating GUIs from your PlugIn!
Copyright © 2016 Will Pirkle

! unsigned int uSampleOffset;/* future expansion */!
}GUI_PARAMETER;!
 !
When UI controls change, your plugin will be queried as to any updates that need to occur. You will pass
back a list of these structures, one for each GUI parameter that needs updating. You will not alter your
own underlying GUI-linked variables. Instead, you will supply this outbound list of changes, very similar
to the way it is done in VST3. NOTE: these calls to your plugin will be made from the low-priority GUI pro-
cessing thread, not the high-priority audio processing thread. Your outbound changes will be handled in a
thread safe manner and your your underlying variables will be updated during the pre-Processing phase,
outlined in RAFX Technical Note 1, also in a thread safe manner.!!
The CLinkedList Object!
There is a new generic C++ linked list object contained in pluginconstants.h which is used to create the
lists of controls that you need to have updated as part of this operation. This object is tiny with short func-
tions and low overhead. It is also simple for you to use although it is flexible enough to be used as a
stack. The simplest way to show this is through an example. Consider this RackAFX GUI setup:!!

!
The GUI consists of two volume knobs and two switches that are either SWITCH_ON or SWITCH_OFF in
value (Unity Gain and Boost). The RackAFX Control Ids are shown and as normal, do not need to be
zero-indexed. When updating the GUI, you will refer to these Control Id values, which are printed in a
comment block above the two UI handler functions userInterfaceChange() and the new checkUd-
pateGUI() method. You will fill in the checkUpdateGUI() method with any outbound changes that you
want to occur as the result of other controls being changed. For this simple example, we will use the fol-
lowing logic:!!
Unity Gain!
When this control is selected (in the SWITCH_ON position), we want the two volume knobs to move to
their 0.0dB positions and the two underlying variables to change to 0.0 each. !!
6dB Boost!
When this control is selected (in the SWITCH_ON position), we want the two volume knobs to move to
their +6.0dB positions and the two underlying variables to change to +6.0 each. !!!

Control Name Variable Name RackAFX Control Id

Left Volume (dB) m_fVolumeLeft_dB 8

Right Volume (dB) m_fVolumeRight_dB 9

Unity Gain m_uUnityGain 45

6db Boost m_uBoost 46

! !

RAFX Technical Note 2! Updating GUIs from your PlugIn!
Copyright © 2016 Will Pirkle

The function prototype for checkUdpateGUI() is:!!
checkUpdateGUI(int nControlIndex, !
! ! float fValue, !
! ! CLinkedList<GUI_PARAMETER>& guiParameters);!!
The parameters are:!!
nControlIndex:! the RackAFX Control Id of the control that has just changed!!
fVelue:! ! the actual value of the control in floating point format !!
CLinkedList<GUI_PARAMETER>& guiParameters:!
! ! ! a reference to the parameter list that you will populate !
! ! ! with outbound changes!!
In order to use the function, you follow these steps:!
1. decode the incoming nControlIndex variable to check and see if the corresponding control will need to

issue updates; if the control does not create any updates, return false!!
2. create a GUI_PARAMETER struct and fill in the information: the Control Id of the parameter to alter

and the actual value it will take on after alteration, then return true to indicate that updates are re-
quired; NOTE: you do NOT need to alter the bDirty flag; create one GUI_PARAMETER structure for
each control that needs updating!!

The CLinkedList has several member functions for placing items in the list and we only need to use one
of them named append() so for the example above, your function would look like this:!!
bool __stdcall YOURPROJECT::checkUpdateGUI(int nControlIndex, !
! ! ! ! ! ! float fValue, !
! ! ! ! ! ! CLinkedList<GUI_PARAMETER>& guiParameters)!
{!
! switch(nControlIndex) // decode the control that changed!
! {!
! ! case 45: // 45 is the Unity Gain button!
! ! {!
! ! ! if(fValue == SWITCH_ON)!
! ! ! {!
! ! ! ! // --- change Left Volume to 0.0dB!
! ! ! ! GUI_PARAMETER param1 = {0};!
! ! ! ! param1.uControlId = 8; ! ! // 8 = left volume knob!
! ! ! ! param1.fActualValue = 0.0; ! // set to 0.0dB!
! ! ! ! guiParameters.append(param1); ! // append it!!
! ! ! ! // --- change Right Volume to 0.0dB!
! ! ! ! GUI_PARAMETER param2 = {0};!
! ! ! ! param2.uControlId = 9 ;! ! // 9 = right volume knob!
! ! ! ! param2.fActualValue = 0.0; ! // set to 0.0dB!
! ! ! ! guiParameters.append(param2);! // append it!!
! ! ! ! // —— return true since we made updates!
! ! ! ! return true;!
! ! ! }!
! ! ! break;!
! ! }!
! ! !

! !

RAFX Technical Note 2! Updating GUIs from your PlugIn!
Copyright © 2016 Will Pirkle

! ! case 46: // 46 is the +6dB Boost button!
! ! {!
! ! ! if(fValue == SWITCH_ON)!
! ! ! {!
! ! ! ! // --- change Left Volume to +6.0dB!
! ! ! ! GUI_PARAMETER param1 = {0};!
! ! ! ! param1.uControlId = 8; ! ! // 8 = left volume knob!
! ! ! ! param1.fActualValue = 6.0; ! // set to 6.0dB!
! ! ! ! guiParameters.append(param1); ! // append it!!
! ! ! ! // --- change Right Volume to +6.0dB!
! ! ! ! GUI_PARAMETER param2 = {0};!
! ! ! ! param2.uControlId = 9 ;! ! // 9 = right volume knob!
! ! ! ! param2.fActualValue = 6.0; ! // set to 6.0dB!
! ! ! ! guiParameters.append(param2);! // append it!!
! ! ! ! // —— return true since we made updates!
! ! ! ! return true;!
! ! ! }!
! ! ! break;!
! ! }!!
! ! default:!
! ! ! break;!
! }!!
! return false;!
}!!
After the function is called, the host application will update the GUI locations and your parameter changes
will be applied in a thread safe manner to be updated on the next audio processing cycle. At the end of
the updating, your plugin base class will receive a call to the function clearUpdateGUIParameters() in
which it will clean out the linked list that you supplied. There is nothing for you to do here as the clean
up is automatic. The reason that your plugin needs to clean out the list is that the append() function
calls use the new operator to create copies of the statically declared structures (remember this is happen-
ing in the low priority GUI thread, not the signal processing thread) and since they were created in your
address space your plugin needs to delete them. !!
Notice the input control value fValue is a floating point type, and the outbound setting fActualValue is also
a float. You can cast variables to and from your desired controls (int or UINT) as needed. In the above
example, the outbound values happen to be floating point types. !!!!!!!!!!!

! !

